Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
BMC Plant Biol ; 23(1): 490, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37828439

RESUMO

BACKGROUND: Arbutus unedo L. is a wild tree of Mediterranean regions used as food and in traditional medicine and important for afforestation programs. There is no detailed information available on the variation of A. unedo leaves metabolome across the seasons. The leaves were analyzed by Proton nuclear magnetic resonance (1 H NMR)-based metabolomics, comparing samples harvested across the seasons and in ten different natural habitats of Sardinia (Italy). RESULTS: Multivariate analysis showed the impact of seasonal variation on the metabolome: glucose and quinic acid increased in summer, while in spring sucrose was accumulated. ß-Arbutin, the main known active principle of A. unedo, generally reached the highest concentration in autumn. In winter, O-ß-methylglucose, γ-aminobutyric acid (GABA), flavonols (quercetin-3-O-α-rhamnoside, myricetin-3-O-α-rhamnoside, kaempferol-3-O-α-rhamnoside), catechin, and gallocatechin increased. Characteristic metabolomic features were found also for samples collected in different locations. For instance, trees growing at the highest altitude and exposed to lower temperatures produced less flavonols and catechins. The only sample collected on trees growing on limestones, dolomites, and dolomitic limestones type of soil showed generally the highest content of arbutin. The highest phenolics content was found during spring, while samples collected on flowering branches in winter were the ones with the highest flavonoid content. The antioxidant activity was also variated, ranging from 1.3 to 10.1 mg of Trolox equivalents (TE)/mL of extract, and it was positively correlated to both total phenolics and flavonoid content. Winter samples showed the lowest antibacterial activity, while summer and autumn ones exhibited the highest activity (IC50 values ranging from 17.3 to 42.3 µg/mL against Staphylococcal species). CONCLUSION: This work provides 1 H-NMR fingerprinting of A. unedo leaves, elucidating the main metabolites and their variations during seasons. On the basis of arbutin content, autumn could be considered the balsamic period of this taxon. Samples collected in this season were also the most active ones as antibacterial. Moreover, an interesting metabolomic profile enriched in catechins and flavonols was observed in leaves collected in winter on flowering branches which were endowed with high antioxidant potential.


Assuntos
Antioxidantes , Arbutina , Estações do Ano , Arbutina/análise , Arbutina/metabolismo , Antioxidantes/metabolismo , Flavonoides/metabolismo , Fenóis/metabolismo , Flavonóis/metabolismo , Extratos Vegetais/análise , Ecossistema , Antibacterianos , Folhas de Planta/metabolismo
2.
RSC Adv ; 13(38): 26550-26562, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692352

RESUMO

The development of polymeric fabrics with photoinduced antibacterial activity is important for different emerging applications, ranging from materials for medical and clinical practices to disinfection of objects for public use. In this work we prepared a series of cellulose acetate membranes, by means of phase inversion technique, introducing different additives in the starting polymeric solution. The loading of 5,10,15,20-tetraphenylporphyrin (TPP), a known photosensitizer, was considered to impart antibacterial photodynamic properties to the produced membranes. Besides, the addition of a surfactant (Pluronic F-127) allowed to modify the morphology of the membranes whereas the use of graphene oxide (GO) enabled further photo-activated antibacterial activity. The three additives were tested in various concentrations and in different combinations in order to carefully explore the effects of their mixing on the final photophysical and photodynamic properties. A complete structural/morphologycal characterization of the produced membranes has been performed, together with a detailed photophysical study of the TPP-containing samples, including absorption and emission features, excited state lifetime, singlet oxygen production, and confocal analysis. Their antibacterial activity has been assessed in vitro against S. aureus and E. coli, and the results demonstrated excellent bacterial inactivation for the membranes containing a combination of the three additives, revealing also a non-innocent role of the membrane porous structure in the final antibacterial capacity.

3.
J Funct Biomater ; 14(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37754886

RESUMO

Metal-organic frameworks (MOFs) are a class of crystalline porous materials with outstanding physical and chemical properties that make them suitable candidates in many fields, such as catalysis, sensing, energy production, and drug delivery. By combining MOFs with polymeric substrates, advanced functional materials are devised with excellent potential for biomedical applications. In this research, Zeolitic Imidazolate Framework 8 (ZIF-8), a zinc-based MOF, was selected together with cellulose, an almost inexhaustible polymeric raw material produced by nature, to prepare cellulose/ZIF-8 composite flat sheets via an in-situ growing single-step method in aqueous media. The composite materials were characterized by several techniques (IR, XRD, SEM, TGA, ICP, and BET) and their antibacterial activity as well as their biocompatibility in a mammalian model system were investigated. The cellulose/ZIF-8 samples remarkably inhibited the growth of Gram-positive and Gram-negative reference strains, and, notably, they proved to be effective against clinical isolates of Staphylococcus epidermidis and Pseudomonas aeruginosa presenting different antibiotic resistance profiles. As these pathogens are of primary importance in skin diseases and in the delayed healing of wounds, and the cellulose/ZIF-8 composites met the requirements of biological safety, the herein materials reveal a great potential for use as gauze pads in the management of wound infections.

5.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234575

RESUMO

The development of green, low cost and sustainable synthetic routes to produce metal nanoparticles is of outmost importance, as these materials fulfill large scale applications in a number of different areas. Herein, snail slime extracted from Helix Aspersa snails was successfully employed both as bio-reducing agent of silver nitrate and as bio-stabilizer of the obtained nanoparticles. Several trials were carried out by varying temperature, the volume of snail slime and the silver nitrate concentration to find the best biogenic pathway to produce silver nanoparticles. The best results were obtained when the synthesis was performed at room temperature and neutral pH. UV-Visible Spectroscopy, SEM-TEM and FTIR were used for a detailed characterization of the nanoparticles. The obtained nanoparticles are spherical, with mean diameters measured from TEM images ranging from 15 to 30 nm and stable over time. The role of proteins and glycoproteins in the biogenic production of silver nanoparticles was elucidated. Infrared spectra clearly showed the presence of proteins all around the silver core. The macromolecular shell is also responsible of the effectiveness of the synthesized AgNPs to inhibit Gram positive and Gram negative bacterial growth.

6.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144518

RESUMO

Isatin and its derivatives are important heterocycles found in nature and present in numerous bioactive compounds which possess various biological activities. Moreover, it is an essential building block in organic synthesis. The discovery of novel compounds active against human pathogenic bacteria and fungi is an urgent need, and the isatin may represent the suitable scaffold in the design of biologically relevant antimicrobials. A small library of 18 isatin hybrids was synthetized and evaluated for their antimicrobial potential on three reference strains: S. aureus, E. coli, both important human pathogens infamous for causing community- and hospital-acquired severe systemic infections; and C. albicans, responsible for devastating invasive infections, mainly in immunocompromised individuals. The study highlighted two lead compounds, 6k and 6m, endowed with inhibitory activity against S. aureus at very low concentrations (39.12 and 24.83 µg/mL, respectively).


Assuntos
Anti-Infecciosos , Isatina , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Candida albicans , Escherichia coli , Humanos , Indóis/farmacologia , Isatina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Relação Estrutura-Atividade
7.
J Funct Biomater ; 13(3)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893456

RESUMO

The availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO3) nanoparticles in the aim to obtain composite materials with improved biological performance. To this purpose, we used HA, as well as HA functionalized with polyacrilic acid (HAPAA) or poly(ethylenimine) (HAPEI), as supports and polyvinylpyrrolidone (PVP) as stabilizing agent for WO3 nanoparticles. The number of nanoparticles loaded on the substrates was determined through Molecular Plasma-Atomic Emission Spectroscopy and is quite small, so it cannot be detected through X-ray diffraction analysis. It increases from HAPAA, to HA, to HAPEI, in agreement with the different values of zeta potential of the different substrates. HRTEM and STEM images show the dimensions of the nanoparticles are very small, less than 1 nm. In physiological solution HA support displays a greater tungsten cumulative release than HAPEI, despite its smaller loaded amount. Indeed, WO3 nanoparticles-functionalized HA exhibits a remarkable antibacterial activity against the Gram-positive Staphylococcus aureus in absence of cytotoxicity, which could be usefully exploited in the biomedical field.

8.
Antibiotics (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326821

RESUMO

Advances in nanotechnology have opened up new horizons in nanomedicine through the synthesis of new composite nanomaterials able to tackle the growing drug resistance in bacterial strains. Among these, nanosilver antimicrobials sow promise for use in the treatment of bacterial infections. The use of polydopamine (PDA) as a biocompatible carrier for nanosilver is appealing; however, the synthesis and functionalization steps used to obtain Ag-PDA nanoparticles (NPs) are complex and require time-consuming cleanup processes. Post-synthesis treatment can also hinder the stability and applicability of the material, and dry, offline characterization is time-consuming and unrepresentative of real conditions. The optimization of Ag-PDA preparation and purification together with well-defined characterization are fundamental goals for the safe development of these new nanomaterials. In this paper, we show the use of field-flow fractionation with multi-angle light scattering and spectrophotometric detection to improve the synthesis and quality control of the production of Ag-PDA NPs. An ad hoc method was able to monitor particle growth in a TLC-like fashion; characterize the species obtained; and provide purified, isolated Ag-PDA nanoparticles, which proved to be biologically active as antibacterial agents, while achieving a short analysis time and being based on the use of green, cost-effective carriers such as water.

9.
Pharmaceutics ; 13(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371782

RESUMO

Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ. This represents an ideal solution for the eradication or prevention of infection, while simultaneously repairing bone defects. Vancomycin hydrochloride and gentamicin sulfate, here considered for testing, were loaded into a previously developed and largely investigated hybrid bone-mimetic scaffold made of collagen fibers biomineralized with magnesium doped-hydroxyapatite (MgHA/Coll), which in the last ten years has widely demonstrated its effective potential in bone tissue regeneration. Here, we have explored whether it can be used as a controlled local delivery system for antibiotic drugs. An easy loading method was selected in order to be reproducible, quickly, in the operating room. The maintenance of the antibacterial efficiency of the released drugs and the biosafety of medicated scaffolds were assessed with microbiological and in vitro tests, which demonstrated that the MgHA/Coll scaffolds were safe and effective as a local delivery system for an extended duration therapy-promising results for the prevention of bone defect-related infections in orthopedic surgeries.

10.
Res Microbiol ; 172(6): 103873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34389439

RESUMO

Candida albicans and Staphylococcus aureus are common human pathogens, frequently isolated independently or co-isolated from bloodstream infections, and able to form dense polymicrobial biofilms on various medical devices resulting in strong resistance to conventionally used antimicrobials. New and innovative approaches are therefore needed to ensure the successful management of biofilm related infections. In this study, a chalcone-based derivative and a polycyclic anthracene-maleimide adduct, previously ascertained by us as inhibitors of C. albicans and S. aureus growths, respectively, were reconsidered in a new perspective by evaluating the efficacy of a combined treatment against a polymicrobial biofilm. Both quantitative and qualitative analyses were carried out to delve into their inhibitory potential on the polymicrobial population. Our results indicate that these newly identified antimicrobials are effective in reducing the biomass of the mixed C. albicans-S. aureus biofilm and the viability of fungal-bacterial cells within the polymicrobial community; in addition, confocal laser scanning microscopy demonstrates that the combined treatment thoroughly modifies the architecture of the dual-species biofilm.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Chalconas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/química , Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Chalconas/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/fisiologia
11.
Int J Pharm ; 598: 120408, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647415

RESUMO

Gelatin-based films enriched with snail slime are proposed as novel biodegradable and naturally bioadhesive patches for cutaneous drug delivery. Films (thickness range 163-248 µm) were stretchable and they adhered firmly onto the wetted skin, especially those with high amount (70% V/V) of snail slime extract. Fluconazole was selected as model drug and added to films containing the highest amount of snail slime. The presence of Fluconazole (4.53 ± 0.07% w/w) did not modify significantly the mechanical properties, the swelling degree and the bioadhesive performances of the films. Structural investigations demonstrated that the crystalline form III of the drug changed to the amorphous one, forming an amorphous solid dispersion. Moreover, snail slime prevented the drug recrystallization over time. In vitro permeation studies showed that film exhibited a cumulative drug concentration (over 60% in 24 h) similar to that of the control solution containing 20% w/V of ethanol. Fluconazole-loaded gelatin films proved to be effective towards clinical isolates of Candida spp. indicating that the drug maintained its remarkable antifungal activity once formulated into gelatin and snail slime-based films. In conclusion, snail slime, thanks to its peculiar composition, has proved to be responsible of optimal skin adhesion, film flexibility and of the formation of a supersaturating drug delivery system able to increase skin permeation.


Assuntos
Gelatina , Preparações Farmacêuticas , Administração Cutânea , Sistemas de Liberação de Medicamentos , Fluconazol
12.
Int J Pharm ; 591: 119979, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068694

RESUMO

Several strategies have been explored to obtain effective econazole nitrate (ECN) concentrations at the site of application for a prolonged time. In this paper, different gelatin-based film formulations for vaginal application were investigated, containing ECN (10% w/w with respect to gelatin) as pure drug or as drug-solid dispersions (SD). For the production of SD, different polymers were evaluated: polyvinylpyrrolidone (PVP), Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) and Gelucire® 50/13 (mixture of mono-, di- and triglycerides of fatty acids, esters of PEG 1500 and free PEG). Gelucire®-SD showed the best solubility enhancement, increasing 9.2 times the ECN solubility in pH 4.5 solution respect to pure drug; DSC and XRD analysis confirmed the crystalline form of the drug. XRD results evidenced that all gelatin-based films, containing either the drug or the SD, underwent the topotactic transformation of ECN into crystalline econazole (EC), owing to a strong interaction between the drug and the gelatin. Films containing Gelucire®-based SD displayed lower brittleness and rigidity with respect to the other samples; moreover they demonstrated good structural integrity after 24 h of incubation in the acidic solution (swelling degree of about 350%). Then, Gelucire®-SD based films were compared with the corresponding formulations cross-linked by genipin (2% w/w). The addition of genipin did not interfere with the drug-gelatin interaction. Gelucire®-SD based films showed similar release profiles to neat gelatin films, enhancing the drug release in the first 5 h and controlling the EC release over time, avoiding the use of a crosslinking additive. Finally, gelatin films containing Gelucire® solid dispersion displayed good adhesiveness and anti-Candida activity. Overall, results support the potential use of this film formulation as noncytotoxic EC delivery system for the treatment of vaginal candidiasis.


Assuntos
Econazol , Gelatina , Parto Obstétrico , Feminino , Humanos , Polietilenoglicóis , Gravidez , Solubilidade
13.
Nutrients ; 12(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036498

RESUMO

Lactic acid bacteria (LAB) "fermentates" confer a beneficial effect on intestinal function. However, the ability of new fermentations to improve LAB broth activity in preventing pathogen-induced intestinal inflammation and barrier dysfunction has not yet been studied. The objective of this study was to determine if broths of LAB fermented with Eruca sativa or Barbarea verna seed extracts prevent gut barrier dysfunction and interleukin-8 (CXCL8) release in vitro in human intestinal Caco-2 cells infected with enterohemorrhagic Escherichia coli (EHEC) O157:H7. LAB broths were assayed for their effects on EHEC growth and on Caco-2 viability; thereafter, their biological properties were analysed in a co-culture system consisting of EHEC and Caco-2 cells. Caco-2 cells infected with EHEC significantly increased CXCL8 release, and decreased Trans-Epithelial Electrical Resistance (TEER), a barrier-integrity marker. Notably, when Caco-2 cells were treated with LAB broth enriched with E. sativa seed extract and thereafter infected, both CXCL8 expression and epithelial dysfunction reduced compared to in untreated cells. These results underline the beneficial effect of broths from LAB fermented with E. sativa seed extracts in gut barrier and inflammation after EHEC infection and reveal that these LAB broths can be used as functional bioactive compounds to regulate intestinal function.


Assuntos
Brassicaceae/química , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/crescimento & desenvolvimento , Fermentação , Gastroenterite/prevenção & controle , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillus acidophilus , Extratos Vegetais/farmacologia , Probióticos/farmacologia , Sementes/química , Antibacterianos , Barbarea/química , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Farmacorresistência Bacteriana , Impedância Elétrica , Infecções por Escherichia coli , Escherichia coli O157/patogenicidade , Gastroenterite/microbiologia , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/fisiologia , Fitoterapia , Extratos Vegetais/isolamento & purificação
14.
Antibiotics (Basel) ; 9(7)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660009

RESUMO

Extensive documentation is available on plant essential oils as a potential source of antimicrobials, including natural drugs against Candida spp. Yeasts of the genus Candida are responsible for various clinical manifestations, from mucocutaneous overgrowth to bloodstream infections, whose incidence and mortality rates are increasing because of the expanding population of immunocompromised patients. In the last decade, although C. albicans is still regarded as the most common species, epidemiological data reveal that the global distribution of Candida spp. has changed, and non-albicans species of Candida are being increasingly isolated worldwide. The present study aimed to review the anti-Candida activity of essential oils collected from 100 species of the Lamiaceae family growing in the Mediterranean area and the Middle East. An overview is given on the most promising essential oils and constituents inhibiting Candida spp. growth, with a particular focus for those natural products able to reduce the expression of virulence factors, such as yeast-hyphal transition and biofilm formation. Based on current knowledge on members of the Lamiaceae family, future recommendations to strengthen the value of these essential oils as antimicrobial agents include pathogen selection, with an extension towards the new emerging Candida spp. and toxicological screening, as it cannot be taken for granted that plant-derived products are void of potential toxic and/or carcinogenic properties.

15.
Int J Mol Sci ; 21(5)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156029

RESUMO

Non-Escherichia coli Enterobacterales (NECE) can colonize the human gut and may present virulence determinants and phenotypes that represent severe heath concerns. Most information is available for virulent NECE strains, isolated from patients with an ongoing infection, while the commensal NECE population of healthy subjects is understudied. In this study, 32 NECE strains were isolated from the feces of 20 healthy adults. 16S rRNA gene sequencing and mass spectrometry attributed the isolates to Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Enterobacter kobei, Citrobacter freundii, Citrobacter amalonaticus, Cronobacter sp., and Hafnia alvei, Morganella morganii, and Serratia liquefaciens. Multiplex PCR revealed that K. pneumoniae harbored virulence genes for adhesins (mrkD, ycfM, and kpn) and enterobactin (entB) and, in one case, also for yersiniabactin (ybtS, irp1, irp2, and fyuA). Virulence genes were less numerous in the other NECE species. Biofilm formation was spread across all the species, while curli and cellulose were mainly produced by Citrobacter and Enterobacter. Among the most common antibiotics, amoxicillin-clavulanic acid was the sole against which resistance was observed, only Klebsiella strains being susceptible. The NECE inhabiting the intestine of healthy subjects have traits that may pose a health threat, taking into account the possibility of horizontal gene transfer.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterobacteriaceae/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Citrobacter/efeitos dos fármacos , Citrobacter/genética , Citrobacter/patogenicidade , Cronobacter/efeitos dos fármacos , Cronobacter/genética , Cronobacter/patogenicidade , Enterobacter/efeitos dos fármacos , Enterobacter/genética , Enterobacter/patogenicidade , Enterobacteriaceae/genética , Enterobacteriaceae/patogenicidade , Microbioma Gastrointestinal/genética , Voluntários Saudáveis , Humanos , Klebsiella/efeitos dos fármacos , Klebsiella/genética , Klebsiella/patogenicidade , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/genética , Virulência/genética , Fatores de Virulência/genética
16.
Int J Biol Macromol ; 143: 126-135, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805330

RESUMO

Snail mucus is an attractive natural substance, which is increasingly used in cosmetic creams and syrups thanks to its emollient, moisturizing, protective and reparative properties. The aim of the present study was to explore the physicochemical properties of chitosan-based films added with snail mucus extracted from Helix Aspersa Muller. To this aim, chitosan films at different content of snail mucus were fabricated by simple solvent casting technique. The results of X-ray diffraction analyses, tensile mechanical tests, Infrared spectroscopy and thermogravimetry demonstrated that snail mucus addition strongly modifies the properties of chitosan films. In particular, it acted like a plasticizer enhancing films extensibility up to ten times and strongly improving their water barrier and bioadhesion properties, with a trend depending on Snail mucus content. Furthermore, it provides the films with antibacterial properties and enhanced cytocompatibility, yielding materials with tailored properties for specific requirements.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Muco/química , Caramujos/química , Animais , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Análise Espectral , Vapor , Termogravimetria
17.
Microorganisms ; 7(8)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405113

RESUMO

Escherichia coli may innocuously colonize the intestine of healthy subjects or may instigate infections in the gut or in other districts. This study investigated intestinal E. coli isolated from 20 healthy adults. Fifty-one strains were genotyped by molecular fingerprinting and analyzed for genetic and phenotypic traits, encompassing the profile of antibiotic resistance, biofilm production, the presence of surface structures (such as curli and cellulose), and their performance as recipients in conjugation experiments. A phylogroup classification and analysis of 34 virulence determinants, together with genes associated to the pks island (polyketide-peptide genotoxin colibactin) and conjugative elements, was performed. Most of the strains belonged to the phylogroups B1 and B2. The different phylogroups were separated in a principal coordinate space, considering both genetic and functional features, but not considering pulsed-field gel electrophoresis. Within the B2 and F strains, 12 shared the pattern of virulence genes with potential uropathogens. Forty-nine strains were sensitive to all the tested antibiotics. Strains similar to the potential pathogens innocuously inhabited the gut of healthy subjects. However, they may potentially act as etiologic agents of extra-intestinal infections and are susceptible to a wide range of antibiotics. Nevertheless, there is still the possibility to control infections with antibiotic therapy.

18.
ACS Infect Dis ; 5(9): 1524-1534, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31264842

RESUMO

In this paper, a small series of anthracene-maleimide-based compounds was prepared and evaluated to assess the antimicrobial potential of this polycyclic core, a scaffold previously unexplored for new antibiotic development. Some of the new compounds showed appreciable anti-Staphylococcus aureus activity, together with good safety profiles. In particular, compound 13 proved to be the most promising of the series, showing remarkable antimicrobial activity toward planktonic and sessile bacterial cells within a mature preformed biofilm. The mechanism of action seems to be related to the ability of this compound to interfere with bacterial membrane functionality, probably through the targeting of key enzymes responsible for membrane redox homeostasis and energy production. The data reported confirm the ability of this polycyclic nucleus to behave as a new "privileged structure", suitable to be further exploited in the antimicrobial field.


Assuntos
Antracenos/química , Antibacterianos/síntese química , Maleimidas/química , Compostos Policíclicos/síntese química , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Células Vero
19.
Molecules ; 24(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669643

RESUMO

The occurrence of invasive fungal infections represents a substantial threat to human health that is particularly serious in immunocompromised patients. The limited number of antifungal agents, devoid of unwanted toxic effects, has resulted in an increased demand for new drugs. Herein, the chalcone framework was functionalized to develop new antifungal agents able to interfere with cell growth and with the infection process. Thus, a small library of chalcone-based analogues was evaluated in vitro against C. albicans ATCC 10231 and a number of compounds strongly inhibited yeast growth at non-cytotoxic concentrations. Among these, 5 and 7 interfered with the expression of two key virulence factors in C. albicans pathogenesis, namely, hyphae and biofilm formation, while 28 emerged as a potent and broad spectrum antifungal agent, enabling the inhibition of the tested Candida spp. and non-Candida species. Indeed, these compounds combine two modes of action by selectively interfering with growth and, as an added value, weakening microbial virulence. Overall, these compounds could be regarded as promising antifungal candidates worthy of deeper investigation. They also provide a chemical platform through which to perform an optimization process, addressed at improving potency and correcting liabilities.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Chalconas/química , Fungos/efeitos dos fármacos , Chumbo/química , Chumbo/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Fungos/fisiologia , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células Vero , Fatores de Virulência , Leveduras/efeitos dos fármacos
20.
Antiviral Res ; 162: 22-29, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30529090

RESUMO

Parvovirus B19 (B19V), a single-stranded DNA virus in the family Parvoviridae, is a human pathogenic virus responsible for a wide range of clinical manifestations. Currently there is no approved antiviral therapy for parvovirus infection. The acyclic nucleoside phosphonate cidofovir (CDV) has been demonstrated to inhibit replication of B19V in vitro. The aim of the present study was to evaluate whether brincidofovir (BCV), a novel lipid conjugate of CDV, could also inhibit B19V replication. Experiments were carried out in erythroid progenitor cells (EPCs) and UT7/EpoS1 cells, infected with B19V and cultured in the presence of different concentrations of BCV and CDV for comparison. The dynamics of viral replication was evaluated by a qPCR-based assay and the extent of inhibition of viral replication exerted by the compounds determined, along with the effect of the compounds on cell viability and cell proliferation rates. Results confirmed that BCV showed significantly higher antiviral activity against B19V compared to CDV in both cell-based systems. For BCV, the calculated EC50 values were in the range 6.6-14.3 µM in EPCs and 0.22-0.63 µM in UT7/EpoS1 cells. In comparison, the EC50 values for CDV were >300 µM in EPCs and 16.1 µM in UT7/EpoS1 cells. Concurrently, the effects on cell viability were observed at a much higher concentration of BCV, with calculated CC50 values in the range 93.4-102.9 µM in EPCs and 59.9-66.8 µM in UT7/Epos1. The antiviral activity was observed specifically with the metabolically active stereoisomer of BCV suggesting that CDV-diphosphate, the metabolite of both BCV and CDV, was the active antiviral. Our results support a selective role for BCV in the inhibition of B19 viral replication.


Assuntos
Antivirais/farmacologia , Citosina/análogos & derivados , Organofosfonatos/farmacologia , Parvovirus B19 Humano/efeitos dos fármacos , Células Cultivadas , Citosina/farmacologia , Células Precursoras Eritroides/virologia , Humanos , Parvovirus B19 Humano/fisiologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...